Coding and STEM Elementary Schools

While we are waiting . . .

Follow us on Twitter: @ECiardelli

@mscontant

Changing Math Instruction with STEM Integration

Facts on Computer Science

There are currently 523 222 open Computer Science-related jobs that are unfilled

71% of all new jobs in STEM are computer related yet only 8% of STEM graduates have Computer Science qualifications

A Computer Science major earns 40% more than the college graduate

In elementary, only 10% of classrooms incorporate STEM

Only ½ of students studying computer sciences are female

Information from code.org

Computing jobs are in every industry across the country and will grow at twice the rate of other jobs

"Traditional" Math Instructional

Textbook driven

Instruction was compartmentalized into units

"Monkey see, monkey do" style math examples

Unrelated mathematical terms

Little to no importance placed on collaboration

Emphasis on single, correct answer

Point A to Point B thinking

How effective is traditional math instruction?

Making Students "Doers" of Math

For effective math instruction, students need to:

Understand mathematical processes

Dialogue about math in real life situations

Apply classroom mathematics to their everyday lives

Represent and model mathematical thinking

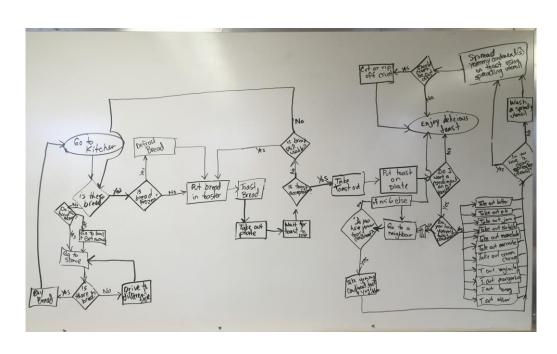
Value incorrect responses at the same value as correct responses

Multiple methods to arrive at a response

Computational Thinking

Computational Thinking

 Decomposing larger problems into smaller portions that need solving

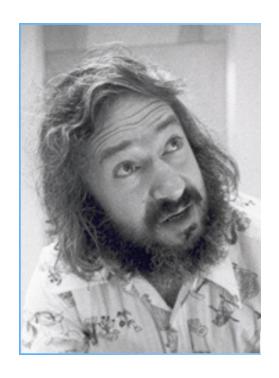

CodeSpeak

To understand code, students need to understand the circumstances...

Term	Definition	Example
Conditional	Code that runs only when specific conditions are met	"If it rains, I will bring my umbrella."
Function	A named set of commands that can be run whenever needed.	"When mom tells me to set the table, I know that involves counting plates, getting napkins"

Algorithmic Thinking

- Providing students with a simple task and having them write the algorithm to see it through, is a great way to introduce CodeSpeak
- Easily connects to literacy programming (procedural writing)



How to Start Teaching Code

Fact: Ethan Elliott, programmer for 2056, learned to code starting in Grade 4 AT HOME!

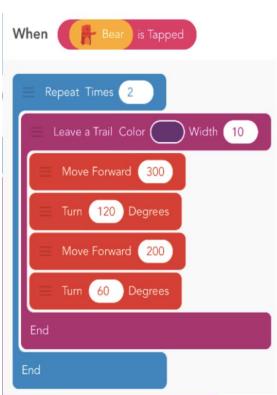
History of CS in Schools

Seymour Papert

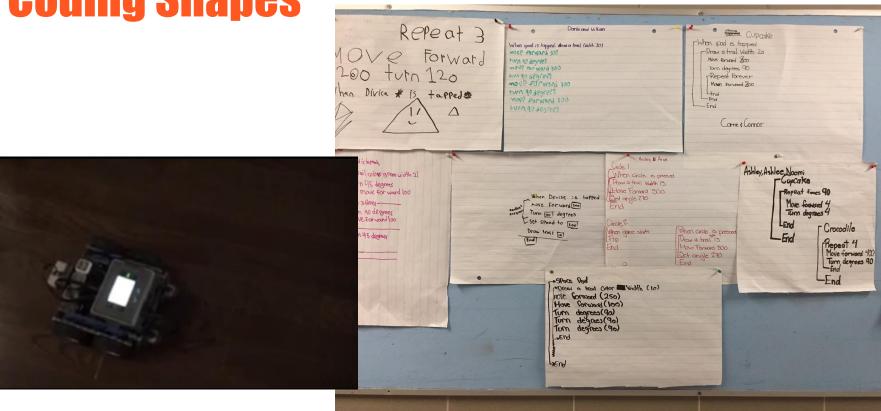
-Teaching: Gede gales and Don'ts

- Do Focus on a few offerings Scratch
- Do Find connections with math
- Do Seek help so that you don't give up

- Don't Use Hour of Code with no follow up
- Don't Assume Coding is only for "smart" kids
- Don't Rely on tools such as Khan Academy that focus on programming language



Try to Code a Square or Diamond



- Provides students opportunities to explore the geometric properties of shapes
- Great application for geometric concepts - i.e. enlargements & reductions; congruence & similar; etc.
- Students are more willing to naturally collaborate and ask for help from each other when writing code
- Excellent opportunity to co-learn along with your students!

Coding Challenges

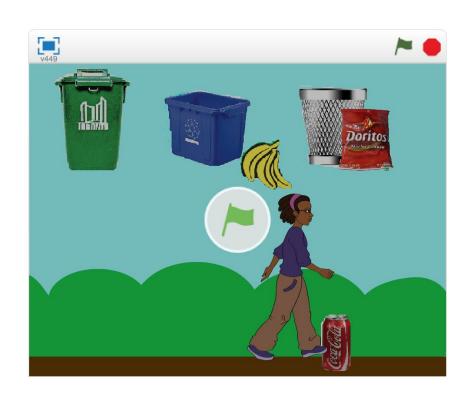
Create a program . . .

- Indicates whether a number is even or odd
- That converts metric conversion
- Create a number guessing program
- That drills multiplication facts

Coding Challenges

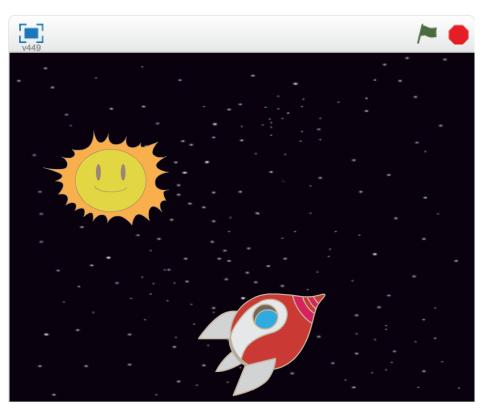
Where is the math in this program?

Where is the CT?


```
when clicked
    I am thinking of a number between 1 and 30. for (3) secs
set c 		 to pick random 1 to 30
repeat until
  ask Can you guess my number? and wait
  set d 		 to answer
             = d  then
         Wow! You got it! for 3 secs
         No, keep guessing! for (3) secs
```

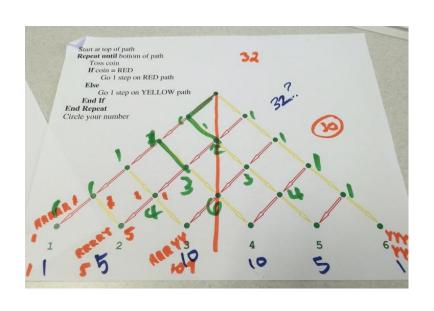
Coding - Student Work

Code for Calculating Square Roots When flag is dicked Say Hello! for 2 occs Say I can calculate square roots I for 3 ses Whit I sec ask What number do you want me to find the square root fo set a to answer set b to sort of a sony join The square root is ... b for 3 sees Boy If you want to try again, press the right arrow. For 2 secs if key right arrow/pressed? then Day Ok goodloye! for 2 secs clse trepeat 10 ask Do you have another number? and wait bet a to answer set b to sart of a Say join The square root is ... b for 3 sees


When Po clicked Say I can do most of your math problems for 5 secs Say For Multiplication hit spacebar for 15/sees Say For Addition hit Up Arrow for 5 sees Wait 2 secs Say I For Subtraction Hit Down Arrow for Specs Wait 2 secs Say [For DNISTON Hit I key Hor 5] secs When Space Key pressed Say Soyou choose Multiplication [for]3] sees ASK Whats your first number? and wait Set A to Answer Ask [Whats your second number?] and wait Set [to M* 18] Say Join The Productis C for Sisces When up ARrow Key 3 pressed Say (So you choose addition for 3) sees Askhuhats your first number? I and woit Set 10 to Answer Ask Whats your secondnumber ? and wait Say Join The sum ist [for 5] secs

Coding - Student Work in Other Areas

Coding - One Last Sample

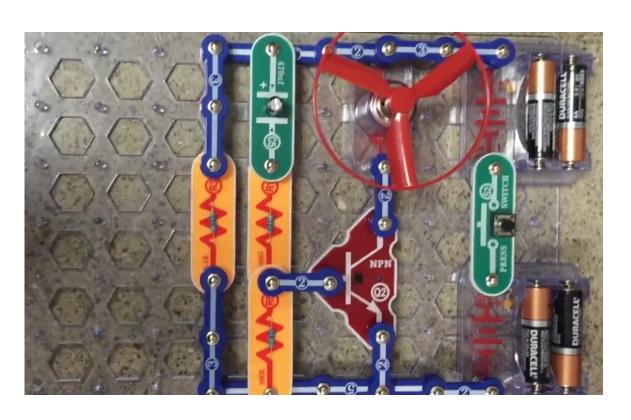

Finding the Math

A great teaching opportunity, when teaching through CS, is to have students find the math in what they are doing. They are always amazed at what they are able to identify. Find opportunities in math activities to integrate code!

Coding - Instructions as Extensions

```
Start at the top of path
Repeat until bottom of path
Toss coin
If coin = RED
Go 1 step on RED
path
Else
Go 1 step on
```

YELLOW path
End if
End Repeat
Circle your number


Courtesy of Prof George Gadanidis

Circuits: It Should Be Taught Every Year!

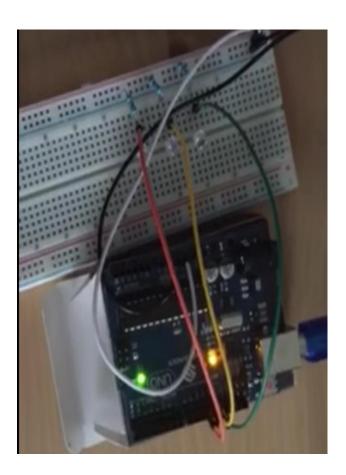
Circuits - Teaching Points

- Current electricity concerns the travel of electrical charge
- Conductors, such as electrical power, allow charge to travel easily
- In a circuit, we can identify the power unit, conductor and the load
- Objects require a continuous current to work (not a static charge)
- Circuits may have a breaker

Circuits - Snap Circuits

Circuits - Makey Makey

 Great tool for students to explore circuits

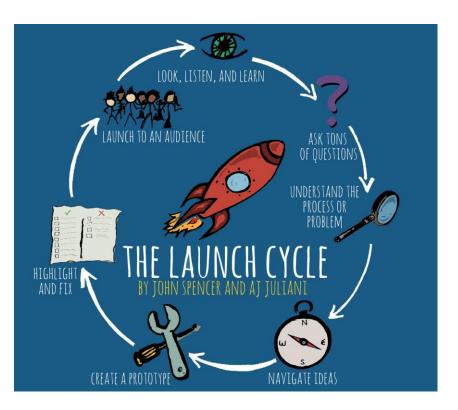

 Allows to explore and discover materials capable of carrying an electric current

 Fantastic extension of Scratch-coded games

Arduino Uno

```
Controlling_LED_by_Button | Arduino 1.6.7
 Controlling_LED_by_Button
const int ledPin = 13;//the number of the led pin
void setup()
 pinMode(keyPin,INPUT);//initialize the key pin as input
 pinMode(ledPin,OUTPUT);//initialize the led pin as output
/************/
void loop()
 //read the state of the key value
 //and check if the kye is pressed
 //if it is, the state is HIGH
  if(digitalRead(keyPin) ==HIGH )
    digitalWrite(ledPin,HIGH);//turn on the led
  else
    digitalWrite(ledPin,LOW);//turn off the led
```

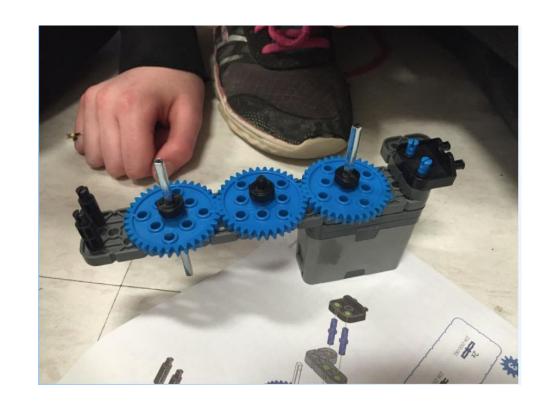

Design Thinking - Unleashing Creativity


Design Thinking

David Kelley

- Founder and Chairman of IDEO
- Professor at Stanford University
- Advocate for Design Thinking in schools

Design Thinking


- Research and design a roller-coaster
- Research and design a trash sorter
- Paper Airplanes carrying a certain weight

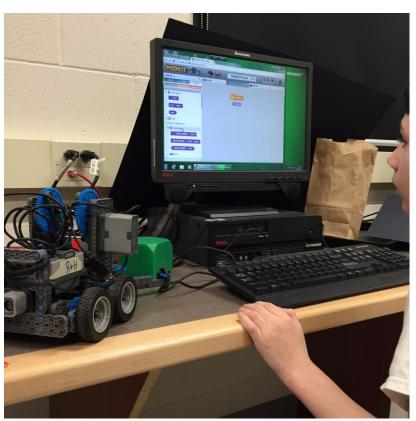
Robotics - Kids' Roadmap to 2056

Vex Robots - Building Phase

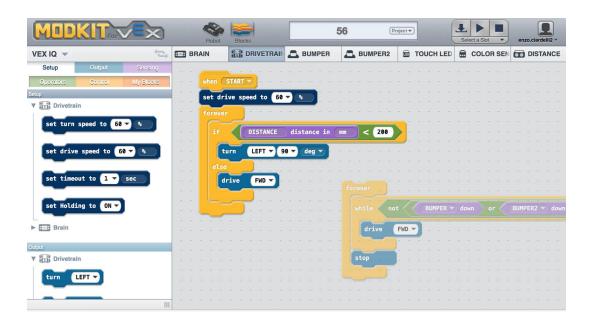
Thoughts:

- How the gears work
- Back motors only
- Terminology
- Doing "wheelies"
- Comparison with circuits
- Weight distribution
- Friction





VEX challenges allow students to conceptualize and apply abstract mathematical and scientific principles without even realizing they are doing so!



Vex Robots - Programming Phase

Vex Robots - Programming Phase

The Vex Robot is Programmed so that it does not hit obstacles. Kids had to figure out how to program the distance censor. They decided that the robot will stop, and turn left.

They also programmed the LED light and the bumpers.

Vex Robots - Programming Phase

Student Voice

"I am really good at math. I finish my work quickly and sometimes my teacher just gave me more of the same work. Coding gave me the opportunity to challenge my knowledge of math."

"I'm okay at math. I became better at developing basic codes. I also like seeing what other students developed. That gives me the chance to make my program better."

"Coding and working with VEX robots helped me to see the math. Like, did you know that the degree of angles MATTER?!"

"Tech Walk"

Let's play / explore:

Try building a circuit with Arduinos

Explore a Vex Robotics kit and the built model

Create with a Makey Makey

Take a Sphero for a spin