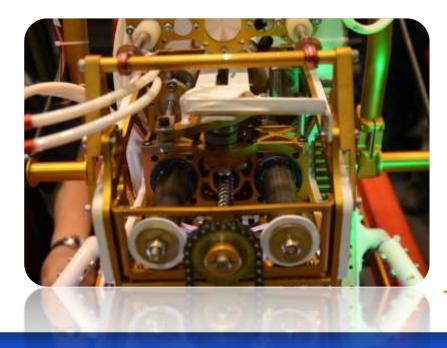


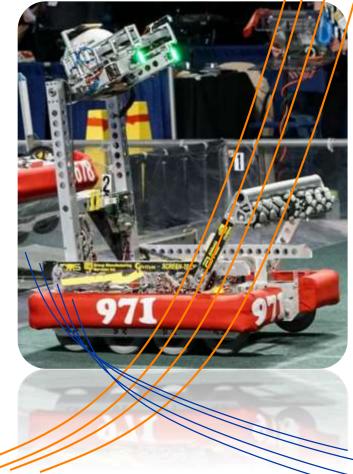
Introduction


- Malavya Shah
 - Graduate of University of Waterloo
 - Bachelor of Applied Science in Mech. Eng. (2014)
- Joined FRC in 2007
 - Team 1241/1285
 - Student (2007-2009)
 - Lead Engineering Mentor
- Evertz Microsystems
 Mechanical Design Engineer

Objectives

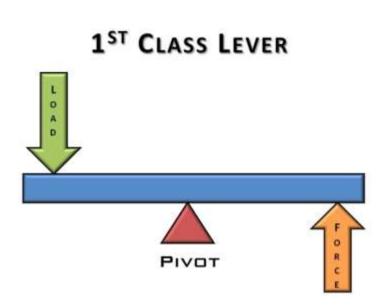
Types of Common Mechanisms Used in FRC

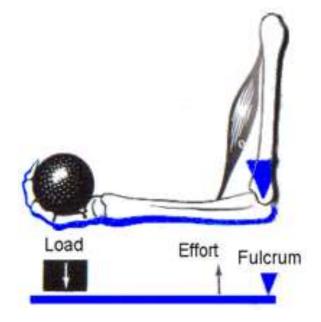
- Types of Motors Used in FRC
- Gears and Sprockets
- Example Problems



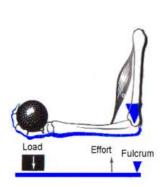
Tips for Designing

- There is no right answer for an FRC game!
- Keep things simple
- Pay attention to orientation of game piece
- Possess Game Piece easily and quickly (touch and go)
- Try and take off load on motors when using arms
- Use sensors wherever possible. Tool operator shouldn't struggle trying to control the mechanisms.
- Prove your designs through prototyping not assumptions.
- Pay attention to your team's skill level, and resources.


Types of Mechanisms


- Levers/Arms
 - Simple Bar Linkages
 - Four Bar Linkages
- Flywheels/Rollers
- Cam mechanisms
- Pulley Systems
- Rack and Pinion
- Pneumatics Systems
- And more!

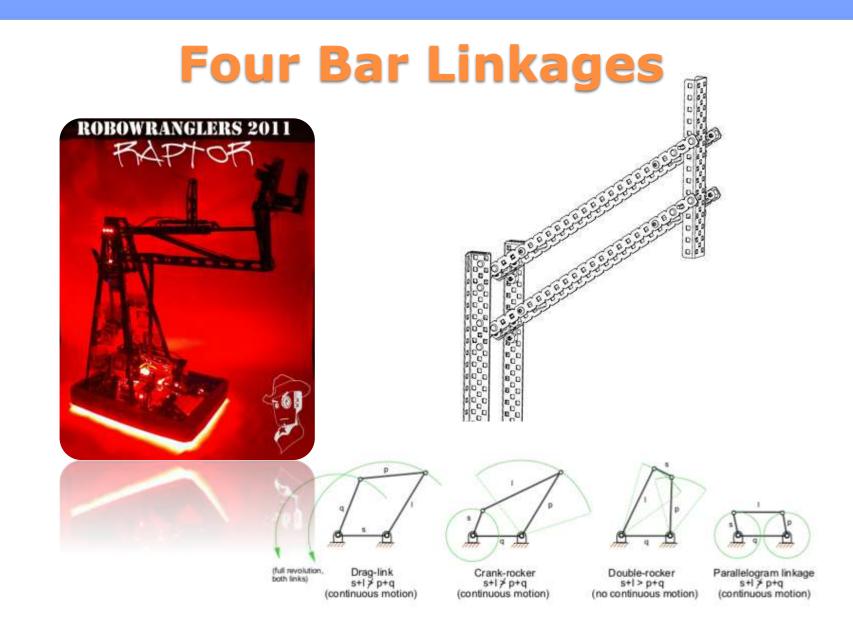
Levers & Arms


- Levers are long bars that spin on a pivot point called fulcrum. They also have a load and an effort.
- Torque arm Challenge

Torque Arm Challenge

- Competitor 1 has their elbows at their hips with their arms out with palms facing up.
- Competitor 2 tries to push down on the arms!
- Competitor 1 now has their arms straight out.
- Competitor 2 tries to push down on these arms now.

Simple Bar Linkages


- Have 1 or 2 joints
- Both joints can be independently controlled

Special Tips:

- Use Sensors at each joint
- Try and take away as much load from the motor using springs, gas struts, elastic tubing

Flywheels / Rollers

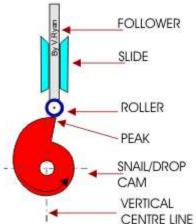
- Composed of a rotating structure. Sometimes designed with weighted structures on perimeter to increase moment of inertia.
- Usually accompanied by a hood (like snow blower) or another wheel.
- Perhaps the fastest way to possess or release a game piece.

Special Tips:

- If used as a scoring mechanism, you must be able to control the rotational speed with precision. It is very difficult to predict the behavior without an encoder, or a light sensor, and proper programming.
- If used for intake, try and gear it to be faster than your drive speed, so that you can possess game pieces while driving away from it.

Turret Mechanisms

- Composed of a rotating structure to allow for robot tool to articulate independently of drive train.
- Turrets can be powered using gears, sprockets/chain, or belt/pulley.
- Needs some sort of bearing configuration in order to rotate smoothly.
- Perhaps the fastest way to shoot at target without pressuring the driver.



Special Tips:

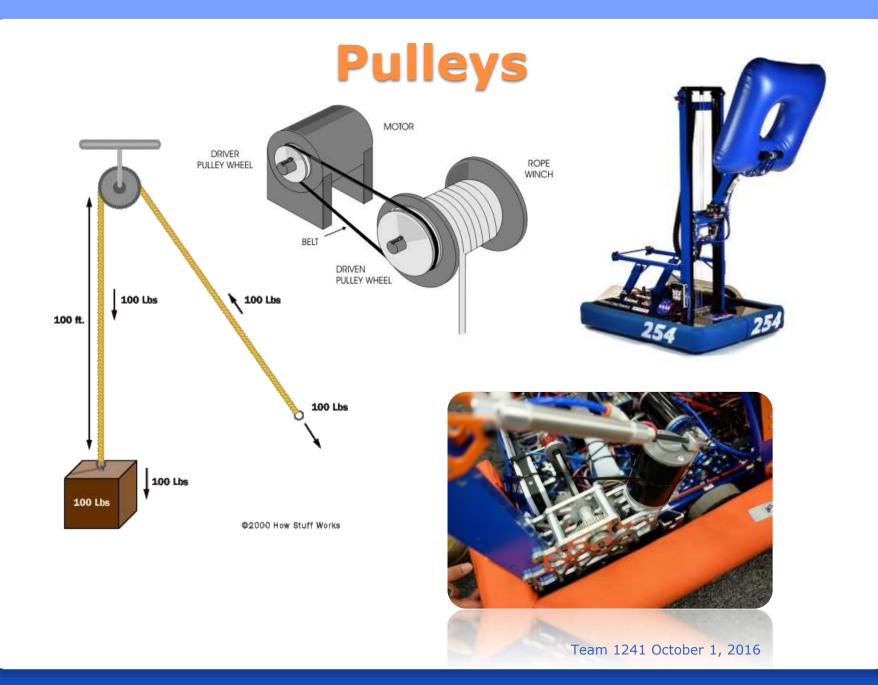
- You must be able to control the rotational speed and tolerances for precision. It is very difficult to predict the behavior without an encoder, or a light sensor, and proper programming.
- Only use a turret if absolutely necessary. It is a complex mechanism for programming. Always consistently feed the turret.

Cam Mechanisms

- Cam Mechanisms convert rotary to linear motion or vise versa.
 - Shooting Games
 - Kicking Games
 - Anything that requires repetitive motion

Elevators

- Composed of a static tower structures and powered carriages.
- Carriages are raised and lowered using chain, belts, rack and pinion, or lead screws.
- Entire system is driven by a gearbox
- Great for pick and place games, motion of carriage is simplified because its completely linear.



Special Tips:

- Counter balance the weight of the carriage, so motor only has to lift game piece. Make sure motor does not have too much load.
- Include sensors to track position of elevator. PID control may need to be used for holding position.
- Make sure carriage is constrained on all 3 axis, so that it cannot jam and twist while moving up and down. BEARINGS BEARINGS BEARINGS

Team 1241 October 1, 2016

Rack and Pinion

Notes:

- Precise Linear Motion with ability to hold position
- Usually pretty slow
- Difficult to implement because it requires precision machining for all parts

Pneumatic Systems

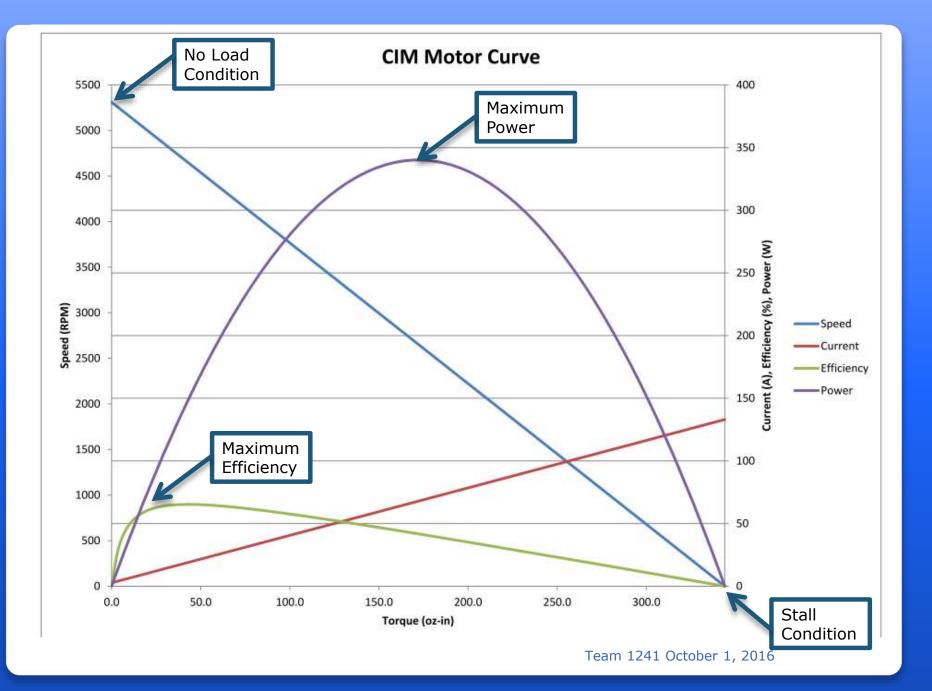
Several Components:

- Storage Tanks
- Compressor
- Pressure Gauge (120PSI)
- Regulator (60PSI)
- Solenoids
- Cylinders
- Pneumatic Lines

Air to "working" components (cylinders, etc.) "Working" Pressure regulator "Working" Pressure Gauge Pressure Switch Pressure Vent Plug "Stored" Pressure Gauge

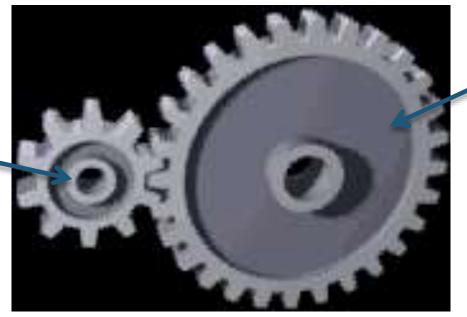
Notes:

- 2 Position applications
- Force exerted depends on bore size & Pressure
- Force = Pressure x Area of Bore
- Retracting is less powerful than extending

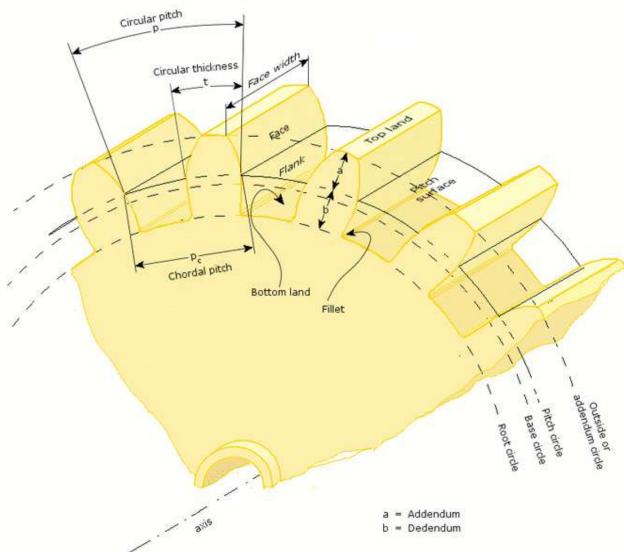

Motors

- Electrical DC Motors used in FRC
- Properties of a Motor:
 - Stall Torque [N*m or oz*in]
 - Torque at which motor speed is 0
 - Free Speed [rad/s or rpm]
 - Speed at which motor torque is 0
 - Terminal voltage [V]
 - Voltage required by motor
 - Efficiency
 - Power Out / Power In = $(T^*\omega) / (V^*I)$

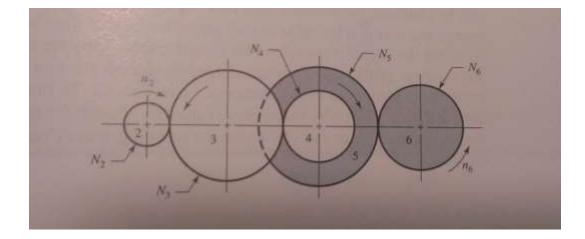
Motors							
Motor	Stall Torque (N m)	Free Speed (RPM)	Picture				
CIM Mini CIM Vex Bag	2.43 1.4 0.4	5310 6200 14000					
Andy Mark 9015	0.428	16000	Andy Marks				
Denso Window	10.6	84					


Motors

Motor	Output Torque (N m)	Free Speed (RPM)	Picture
BaneBots 775Pro 775 –18V 550 540 395	0.710 1.177 0.486 0.279 0.118	18730 19500 19300 16800 15500	
Servo Motor			

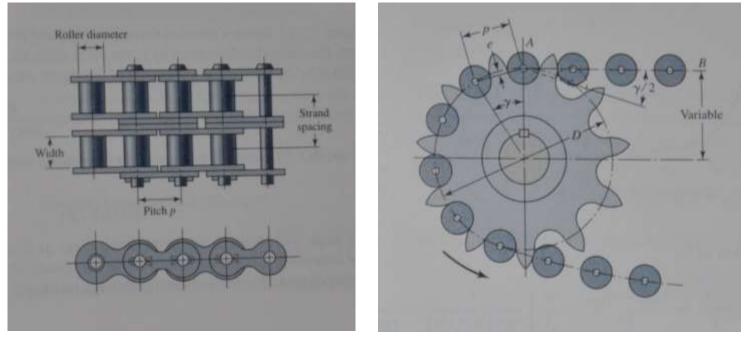


- Pinion Gear –or "Driving Gear"
- Driven Gear
- Pitch Number of Teeth Per Inch
- Pitch Diameter Circle at which the two gears meet


Where: P= diametral pitch (teeth per inch) d = pitch diameter (in) N = number of teeth

P=N/d

Gear Ratios


 $GR = N2/N1 = T2/T1 = \omega 1/\omega 2$ If N2>N1 Torque is increased, speed is decreased If N2<N1 Torque is decreased, speed is increased

Gear Train: GR = (N3/N2)(N4/N3)(N6/N5)

Roller Chain / Sprockets

- Pitch Distance between rollers
- Pitch Diameter Circle at which the roller chain sits on the sprocket

 $D=p/(sin(180^{\circ}/N))$ where: D=diameter, p=pitch, N = teeth

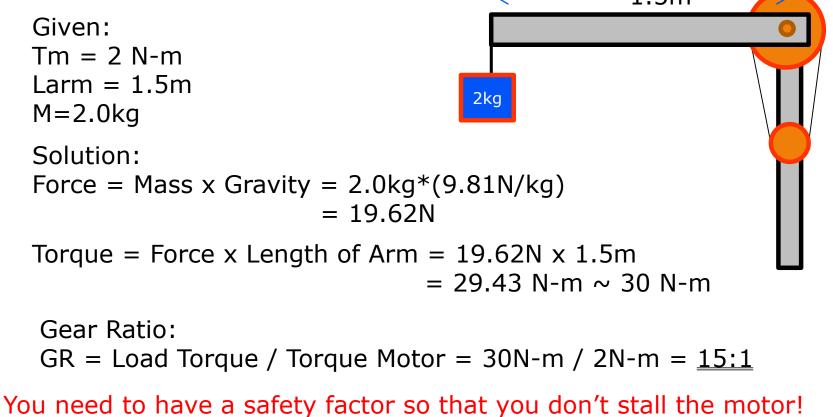
	ANSI B29.1 roller chain standard sizes							
	Size		Pitch	Roller diameter	Tensile strength	Working load		
_	->	25	0.250 <u>in</u> (6.35 <u>mm</u>)	0.130 in (3.30 mm)	781 <u>lb</u> (354 <u>kg</u>)	140 lb (64 kg)		
_	\rightarrow	35	0.375 in (9.53 mm)	0.200 in (5.08 mm)	1,758 lb (797 kg)	480 lb (220 kg)		

Calculating Center to Center Distances Between Sprockets:

$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]$$

$$A = \frac{N_1 + N_2}{2} - \frac{L}{p}$$

Where:


OR
$$\frac{L}{p} = \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p}$$

C=center to center distance L=length of chain N1=# of teeth on driving sprocket N2=#of teeth on driven sprocket p=pitch

Chain Link Calculators: http://www.islandpondrailroad.com/chain.htm http://www.botlanta.org/converters/dale-calc/sprocket.html

Torque Example

 Determine Gear Ratio for a motor that has output torque of 2 N-m and is used to rotate an arm 1.5m long with a mass of 2kg at the end of it.

Speed Example

 Determine Gear Ratio for a motor that Rotates at 5000 rev/min to drive a 4 in wheel 16 ft/s

Given: n = 5000rpm Dwheel = 4in V=16ft/s Solution: $V=n^*\pi^*D$ so Wheel Speed $n = v/(D^*\pi)$ $= 16/((4/12)^*3.14) = 15.27$ rps x 60= 916.2 rpm Gear Ratio: GR = Motor Speed/ Wheel Speed = 5000rpm / 916.2 = 5.45

MANK YOU

malavya.s.1241@gmail.com

