Heather Young & Kayleigh Marshall 2056 Ways to Inspire Conference September 30, 2017

Electronics & Control System

Heather Young

B.Eng., University of Guelph (2017)

Mechanical Design Engineer in Training, Trudell Medical International

Student 2007 – 2013 Mentor 2014 – 2017

Kayleigh Marshall

B.Eng. Candidate, Class of 2020 McMaster University

Student 2012 – 2015 Mentor 2016 – 2017

FRC Robots

A cohesive robot system is required for mobility.

All mechanical designs rely on the electrical control system as support.

Electrical Design

- ► Components
- ► Layout
- ► Tips and Tools
- ► Sensors

Power Distribution Panel (PDP)

- Connections
- Can wires
- Fuses

Voltage Regulator Module

- Converts voltage depending on where it needs to go
- Some components needs different voltages

roboRIO

- Digital IO
- PWM connections
- Analog connections

Motor Controllers

- Types of controllers
- Control of motor speeds

Pneumatic Control Module

- Air compressor
- Solenoids
- Pressure switch

Radio

Communication between the driver station and the robot

Plan

fasten it wherever it fits

Component Considerations

Main Circuit Breaker	Visible Easily accessible Protected from exterior elements
Battery	Keep low, at the base of the robot Easily accessible Keep well secured
Speed Controllers	Close to PDP, directly in line to corresponding motor Accessible for calibration and assessing electrical issues
Radio	Status indicators visible Protected from exterior elements

General Guidelines

- Keep wire runs short when possible
- Securely mount all electrical components to the robot frame

Wire Gauge Reference

Minimum recommended wire sizing

PDP 40 amp circuit 1

PDP 30 amp circuit

PDP 20 amp circuit

roboRio/bridge/5A circuits

Main breaker/battery (50 amp)

12 AWG

14 AWG

18 AWG

20 AWG

6 AWG

1

Keep it neat

Helps to avoid connection issues

 Allows for easier troubleshooting & diagnosis

2

Zip ties, bundles & mounts

- Bundle and route like wires along definitive paths from one component to the next
- Hardware helps keep wire stationary and attached to surfaces

3

Disconnects & terminal

- Anderson Powerpole
 connectors allow for quick
 disconnect of wires and easy
 component replacement
- Use quick disconnect terminals on motors

4

Label

Channels on the PD board

 CAN and PWM connections into roboRIO

Use meaningful naming conventions

Sensors

Allow comprehensive control of the robot

Internal robot state

Relative field positions

Here are a few of Team 2056's most commonly used sensors

Potentiometer

Converts angular position into analog measurement

Measures the variable resistance, which can be read as an analog value

Can determine position and direction of rotation

Example of use: Rotating turret with potentiometer PID control

Encoders

Converts angular position or motion of a shaft/axle to digital signal

Determine translation distance, rotational velocity or angle of robot component

Main components:

- 1. Rotating disc
- 2. Light source
- 3. Photosensor

Example of use: Variable speed shooter wheel controlled by encoder PID

Gyro

Sense rotational movement and changes in orientation

Changes in vibration are read as analog values

Functions best at the center of robot axis of rotation

Accelerometer

3-Axis accelerometer, conveniently located on the roboRIO

Used to determines acceleration of the robot, for example the degree to which the robot is tilted

Switches

Simple to implement and use...

but only provide feedback on single position of a moving part

Detect a fixed position, ensure mechanical limits are not exceeded

Identify presence of game piece or object

Thank you!

Heather Young

&

Kayleigh Marshall