FRC Strategic Design

How to Decide Your Robot Design

Team 1241/1285

Malavya Shah

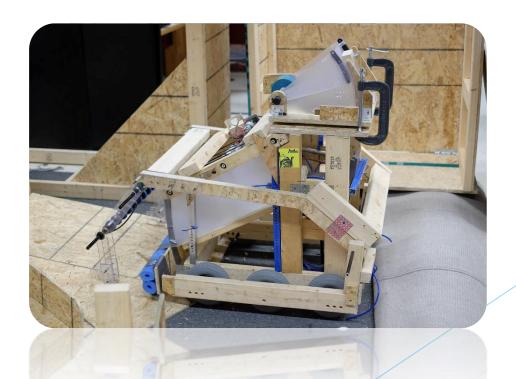
- Graduate of University of Waterloo
 - Bachelor of Applied Science, Mech. Eng. (2014)
- Joined FRC in 2007
 - ► Team 1241/1285
 - Student (2007-2009)
 - Lead Engineering Mentor
- Gypsum Technologies
 - Mechanical Specialist Engineer

Shaqeeb Momen

- Student at McMaster University
 - Bachelor of Engineering and Management,
 Mechatronics Engineering (2022)
- Joined FRC in 2014
 - ▶ Team 1241/1285
 - Student (2014-2017)
- Current Role
 - Design Mentor 1285 (2018 to present)

Objectives

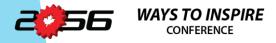
- The Importance of Strategic Design
- Kickoff (and How 1241/1285 Does It)
- Game analysis
- Strategic Mechanism Selection
- Winning Designs
- Mock Kickoff


Tips For Designing

- There is no right answer for an FRC game!
- Keep things simple
- Pay attention to orientation of game piece
- Possess game piece easily and quickly (touch and go)
- Try and take off load on motors when using arms
- Use sensors wherever possible
- Prove your designs through prototyping, not assumptions
- Pay attention to your team's skill level and resources

Your Fate Lies In Kickoff

- ► The decisions made during kickoff can dictate the rest of the design period
- Things to decide during kickoff:
 - Drive chassis
 - Strategic capabilities
 - Mechanisms to prototype


Kickoff Schedule - Saturday

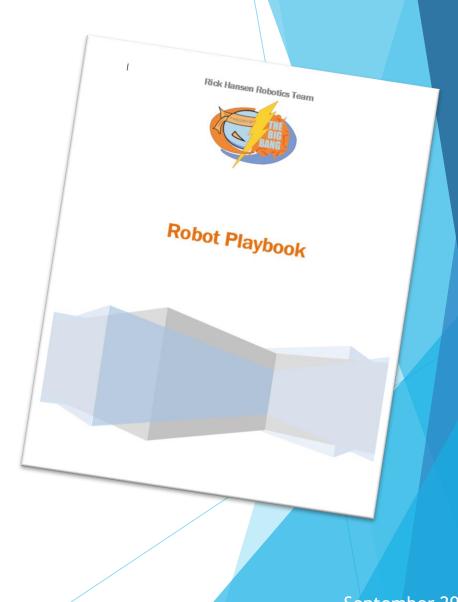
- > 9:30am Gather to watch Kick-Off
 - ▶ In the past, we've held Kick-Off at a library/auditorium
- ▶ 12:00pm Lunch
 - During this time, students and mentors can begin to read the game manual or continue watching field videos
- ▶ 12:45pm Divide into 4 or 5 groups, each led by a mentor
 - Read game manual thoroughly
 - Read rules out loud, writing down any questions about the game

Kickoff Schedule - Saturday

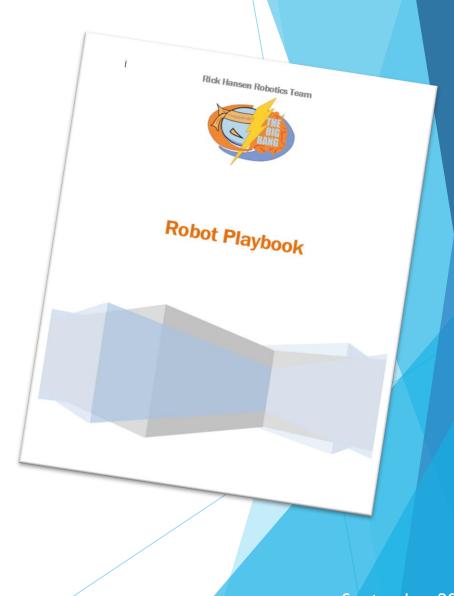
- 2:30pm Detailed scoring analysis and strategy
 - Break scoring into autonomous, tele-op, and endgame
- ► 4:00pm Movements and preferences
 - Outline the possible robot roles and identify the specific role that would be most successful given the resources of the team
- ▶ 8:00pm Wrap up

Kickoff Schedule - Sunday

- 9:00am Meet at location to discuss strategy/requirements list
 - Finalize the list of requirements
- > 9:45am Introduce Mentors/Leads for each section
 - Present strategy decisions from Saturday
- 10:30am Discuss intake, tool, and end game design
 - Begin to collaborate designs
 - Drivetrain should be selected by this point (must have a good reason for non-WCD)
- ▶ 12:30pm Lunch


Kickoff Schedule - Sunday

- ▶ 1:00pm Discuss presented designs, rank and select
 - Accounting the advantages and disadvantages, two designs should be selected for each subsystem to be prototyped
- 2:30pm Detailed decisions and plan of action week 1
 - Set prototype variables for each proof of concept
- 4:00pm Lead mentors and key lead students begin preliminary geometric and parametric studies
 - Detailed drivetrain design begins


The Playbook

- Started with Team 1241, later adapted by 1285
- The "bible" of strategic design
- The Dos and Don'ts for a robotics team
 - ▶ Team specific, but is public for other teams to refer to
- Usually print out multiple copies to use during Kickoff

The Playbook

- Contains information passed on through build seasons
 - Mechanism selection
 - ► Historic performance of certain mechanisms
 - Design tips
 - Etc.

Reading the Game Manual

- Find important "loopholes" that can change your design strategy
 - ► E.g., 2011 1114's Chokehold strategy
 - E.g., 2015 Ramps and tethered robots
 - ► E.g., 2016 Outerworks shot
- Important details can change mechanism selection
 - ► E.g., 2017 Custom rope
- Important for drivers and coaches to understand for practice
 - ▶ E.g., 2014 G40 Human player reaching into the field of play

Scoring Breakdown

- List all possible ways of scoring
- Calculate time/resources required for each scoring motion
- Optimize time/resources with maximum points
- Note the importance of endgame/autonomous points!

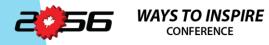
Action	Auto	Teleop	Qual	Playoff
Reaching defense	2	-	-	-
Crossing undamaged defence	10	5	-	-
Boulder in Low Goal	5	2	-	-
Boulder in High Goal	10	5	-	-
Challenge (per robot)	-	5	-	-
Scale (per robot)	-	15	-	-
Breach	-	-	1 RP	20
Capture	-	-	1 RP	25

Action	Criteria	MATCH	Ranking	
		AUTO	TELEOP	Points
AUTO mobility	For each ROBOT that breaks the BASE LINE vertical plane with their BUMPER by T=0	5		
Pressure accumulation	For every three (3) FUEL counted in the Low Efficiency GOAL by T=0	1		-
	For every one (1) FUEL counted in the High Efficiency GOAL by T=0	+ 1 kPa		
	For every nine (9) FUEL counted in the Low Efficiency GOAL by T=0		1 + 1 kPa	
	For every three (3) FUEL counted in the High Efficiency GOAL by T=0			
	If ALLIANCE exceeds a threshold pressure of 40 kPa		20 (Playoffs only)	1 (Quals only)
ROTOR engagement	For each ROTOR turning by period's T=0	60	40	-
	If all four (4) ROTORS turning by T=0		100 (Playoffs only)	1 (Quals only)
Ready for Takeoff	For each TOUCHPAD triggered by a ROBOT at T=0		50	-
Win	ALLIANCE's final score exceeds their opponents'			2 (Quals only)
Tie	ALLIANCE's final score equals their opponents'			(Quals only)

Needs, Wants, Goals

- List all goals for a successful design
 - ▶ Able to solo x rotors, able to win the minibot race
- List all possible robot movements
 - Crossing x defence, stacking totes x high, etc.
- Categorize into needs and wants
 - Needs are absolutely necessary for a successful robot design
 - ▶ Wants are planned to be integrated into the design, but will be the first to be removed if resources run out

Autonomous and Endgame


- Autonomous and endgame mechanisms are sometimes unique mechanisms and one of the sacrifices made for robot design
 - E.g., 2014 254's 3 ball auto (no catcher)
 - ► E.g., 2016 1241's no hang endgame (sacrificed for more offence)
 - E.g., 2017 1241's auto gear holder
- Consider how the effort-reward ratio of these actions and how important they are to your strategy
 - ▶ Always work within the resource limitations of your team to help cut down

Decision Making

- Methods of decision making
 - Decision matrix: taking pros and cons and giving numerical values
 - Linear optimization: finding the upper bound of constraints to maximize scoring output

	PROS	CONS		
G/H	25% increase compared to next best	Capped score		
(6)	Less complex	Caps at 2 RP		
	 Consistent, less mechanisms 	Need help offensively		
	Bigger bonus in playoffs	No offense after gears are finished		
	Easier for driver	Need jack-of-all-trades for alliance		
	Good strategy for districts	Need airship finished before all else		
	Easy to fix	Less market value		
	Higher chance to go undefeated			
в/н	Niche	Need 2 gear bots on alliance		
(0)	1 RP point	Lower playoff bonus		
	No point cap	Lower score output		
	More protection	Forced to pick up on floor		
	Higher tolerance	Ball variability		
	Flexible positions			
B/G/H	Higher scoring potential	Complexity		
(11)	Adaptability/versatility	Packaging		
	Marketing easy	Tight deadlines		
	Always something to do	Resources limited and time to prototype		
	Flexible during match	Weight allocation		
	Top tier team	Risk of failing		
	Strategic complexity (quals vs elims, RP vs points)			

Robot Generalization

- Most (if not all) robots in FRC can be broken down into 4 (or less) main subsystems
 - Drivetrain: normally responsible for traversing the field and any obstacles or defence.
 - Intake: used for obtaining possession/ejecting of game pieces.
 - Tool: main mechanism(s) for scoring points/manipulating game objects (can vary heavily).
 - ► Endgame: mechanism(s) used for scoring points during the final portion of the match the, "Endgame" period.

Mechanism Selection: Intake

- "Touch & Go"
 - Aim for intakes to give possession of the game piece as soon as they come into contact.
 - This will require you to always have some set of active rollers/wheels to contact the game piece.
 - Ideally the linear speed of your intake is faster than your drive.
- Gripping
 - Apply some pressure with elastic/pneumatic methods to keep object secure
 - Clamps, Claws usually do the trick.
 - Sensors are always nice.

Mechanism Selection: Ball Shooter

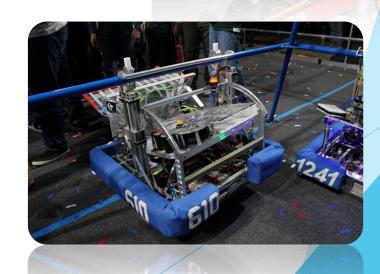
- Catapult/Elastic Launcher
 - Can store the most potential energy
 - Needs to reset after each shot
 - Difficulty: MEDIUM
- Flywheel
 - Good for rapid/high volume shooting consistently
 - Difficulty: HARD
- Piston/Pneumatic Launcher
 - Usually the weakest and least efficient shooter style
 - Good for compact design
 - Difficulty: EASY-ISH

Mechanism Selection: Ball Shooter

- Turret
 - Adds another level of complexity to design
 - Creates more strategic locations for shooting
- Vision Tracking
 - Adds a slight delay, but when implemented properly, increases success rate(2016 vs 2014)
 - Add a dampener for camera to avoid shaking.
 - Requires large amount of time for testing by programmers

Mechanism Selection: Lift

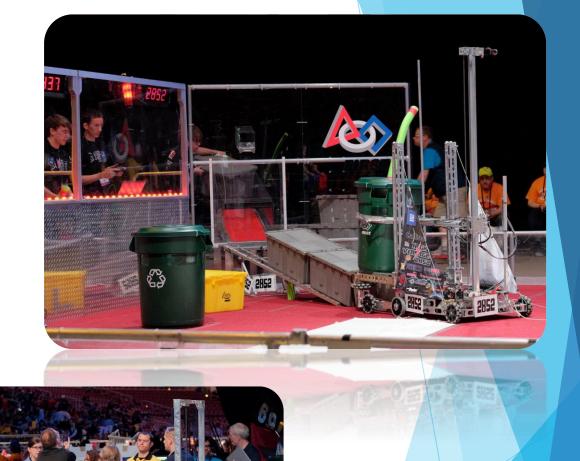
- Simple Bar Linkage
 - ▶ Good for rotating game piece or mechanism with lifting arm
- ▶ 4 or 6 Bar Linkage
 - Good for keeping game piece in same orientation during lifting
 - Arm swing may not be desirable for placing game pieces
- Elevator
 - Straight vertical lift makes design more simple

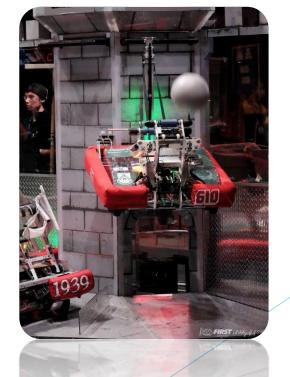


Mechanism Selection: Hanger/Climber

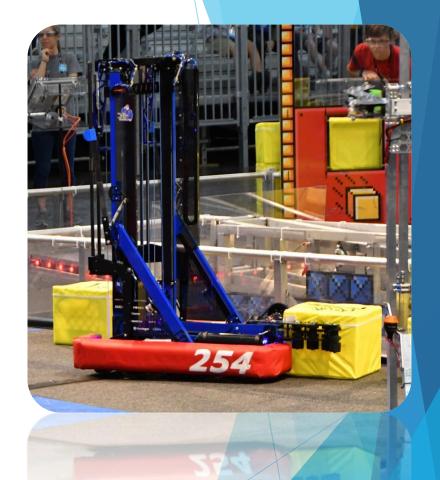
- Winch
 - Good for taller hangs/climbs, usually slower than pneumatic hangers
 - Ratcheting mechanism can help reduce load on motors
- Piston/Pneumatic
 - Good for short distance hangs
 - Can add constant force springs to reduce the required pneumatic force

- ▶ 1114 Simbotics
 - Chokehold strategy
- Key Endgame: Minibot Race

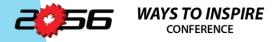

- 254 The Cheesy Poofs
 - > 3 Ball Hot Autonomous
 - ► Multiple shots: fender, fender + robot
 - High shooter exit point
- Key Autonomous: Multiple Hot High Goals (254, 33)

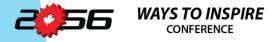

- Ramp robots
 - Increased stacking speed
 - Human player can prepare totes instead of waiting for robot
- ► Tethered Robots 4039, 148
 - Increased stacking speed
- Key Autonomous: Can Grabbing
 - Reduced opponents' maximum potential score

- Outerworks shot
 - Opponents could not touch your robot while defending your shot
- ► Ball stealing (1241)
 - Reduces cycle time and helps damage the castle
- ► Key Endgame: Hanging Shot (610, 330)

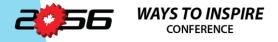


- 4 Rotor Offence and Defence
 - Defending the 4th rotor meant a point swing of over 100
- Key Autonomous: Hopper Auto
 - > 3x value for fuel was essential to achieving 40rp early in the competition season


- Cube scoring on moving/losing scale (195)
 - Having ability to drop cubes on moving/losing scale cleanly meant higher stacks.
- ► Key Autonomous: 3-4 cubes scored on Scale (254)
 - > 2x value for ownership. It also gives a head start for tele-operated period where opponents have to try and score 2 cubes to regain ownership.



Mock Kickoff


Mock Kickoff: Schedule

- Game Animation
- Game Manual
- List of Motions
- Scoring Analysis
- Strategic Goals
- Needs and Wants
- Mechanism Selection
- World Championships!

Mock Kickoff - Game Animation

https://www.youtube.com/watch?v=itHNW2OFr4Y

Mock Kickoff - Game Manual

- ► Goal: Score discs into the appropriate goals (3 goals at opposite driver station)
- Discs are obtained from 2 locations
 - ► Feeder Station Located at your alliance wall station
 - Floor Some discs are located here before match starts, missed discs can also be picked up
 - Protected Zones: Feeder Station, and if you are contacting the Pyramid
- End Game:
 - Elevate robot off the field and climb the pyramid
 - Points are awarded for each level of elevation

Mock Kickoff - Game Manual

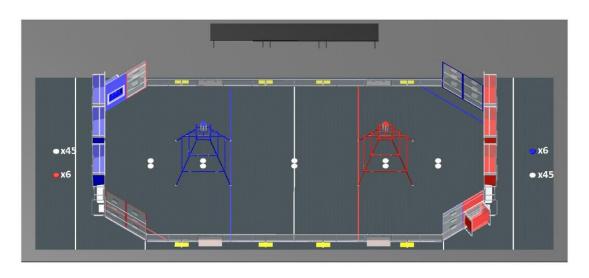
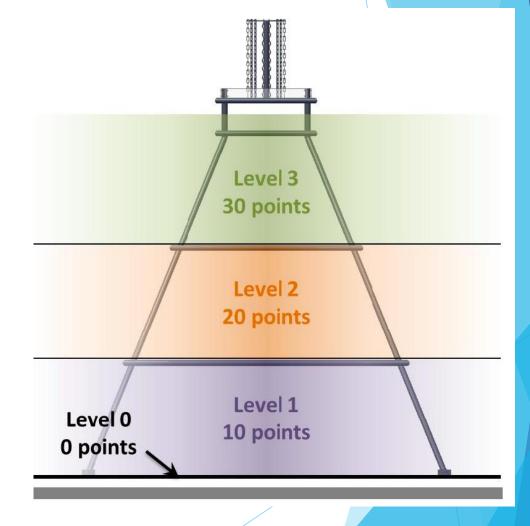
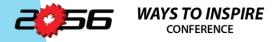



Figure 3-1: Starting Locations for DISCS

	AUTO	TELEOP
LOW GOAL	2	1
MIDDLE GOAL	4	2
HIGH GOAL	6	3
PYRAMID GOAL	N/A	5


Mock Kickoff - List of Motions

- ► Tele-operated:
 - Driving
 - ▶ In all directions
 - ► Able to pivot (on a dime)
 - Intaking a disc from floor
 - Obtaining disc from feeder station
 - Storing Discs (up to 4 at once)
 - Scoring a disc (which goal? And from where on the field?)
 - Scoring coloured discs on the pyramid (5pts per disc)

Mock Kickoff - List of Motions

- Autonomous:
 - Vision tracking goal
 - Scoring a disc
 - Picking up discs
- End Game:
 - Climbing the pyramid (10pt, 20pt, 30pt)

Mock Kickoff - Scoring Analysis

Mock Kickoff - Scoring Analysis

- Each disc in high goal is worth 3 pts in high goal (each cycle of 4 worth 12 pts)
- ► A robot elevated Level 1 is approximately the score of 1 cycle
- ► A robot elevated HIGH is approximately the score of 3 cycles
- ▶ 45 white discs (per alliance), 6 coloured discs (per alliance)
 - Autonomous (3 discs x 3 robots) + 6 accessible on floor = 90pts
 - 45 discs x 3pts + 6 discs x 5 = 165
 - ► Three robots elevated level 3 = 90
 - Maximum Score: 345
 - ➤ To achieve this, all discs have to be scored high, 3 robots must climb to level 3, and 6 discs scored on top of pyramid.

Mock Kickoff - Strategic Goals

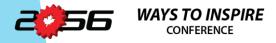
- Score in high goal (3pts per disc)
- Obtain disc from feeder station
- Obtain disc from floor
- Block opponent from scoring
- Climb to level 1, 2, 3
- Score discs on top of pyramid

Mock Kickoff - Needs and Wants

Needs:

- Drive around the field, not get stuck on top of discs
- Score discs in the high goal
- Be elevated level 1
- Pick game elements off floor and feeder station

Wants:


- Score on top of pyramid
- Elevate to level 3

Mock Kickoff - Subsystem Roles

- Assign your all your needs to the general subsystems (you may not need all of them)
 - Drive
 - Intake
 - Tool
 - Endgame

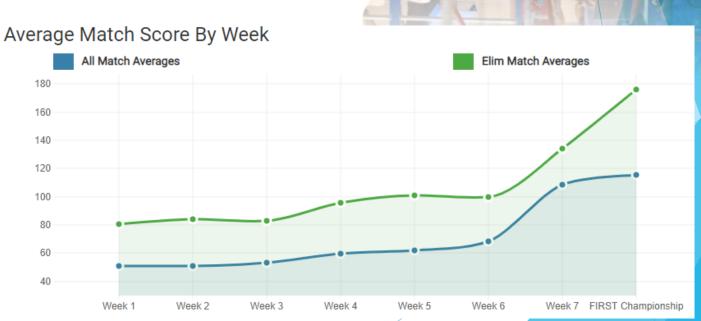
Mock Kickoff - Mechanism Selection

- Pick a mechanism that will best fit the task you assigned to each subsystem (adding minor tweaks to achieve your goals is common)
- Tele-Operated:
 - Drive Train Type?
 - Claw, clamp, roller, shovel intake?
 - Scoring mechanism?
- End Game:
 - Climb on the rungs vs corners?
 - Pneumatic or winch?

Winning Designs - 2013

► 1114 - Simbotics

▶ 50 point hang


Key Autonomous: 7 Disk Auto (2056)

Key Endgame: 50 Point Hang (1114)

WAYS TO INSPIRE

CONFERENCE

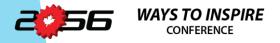
Mock Kickoff - World Championships

Amazing Designs

Amazing Designs

Questions?

Girls In STEM Olympics



https://www.theory6.ca/girls-in-stem-olympics

Thanks for Coming!

- malavya.s.1241@gmail.com
- momens@mcmaster.ca

