
Building a scouting application

with electron

2056 Ways to Inspire Conference – 2018

Ethan Elliott

A Bit of History

 Almost always paper-based scouting with Excel Spreadsheet

 Have only ever been paperless in 2011

 2011 setup required a lot of hardware

Why stop paper-based now?

 Based on the required data for 2018 game

 Needed a way to better track time between events, to calculate cycle times

 Students aren’t great at counting time and watching the game

 By offloading a lot of the work for the student, we can have them collect

more data

 Preform data sanitizing while the student is entering data

If you want to know more about the

strategy…

 CHECK OUT THE PRESENTATION AT THIS TIME IN THIS ROOM WITH THESE GREAT

PEOPLE

Where to start?

 Given the problem of building an entire scouting system across a full stack,

where do you start?

 Which tools should we use?

 What is the available hardware?

 What limitations should we take into account?

 How do we aim for the highest operational uptime?

What does it need to do?

 Needs to have three main components: Server, Admin control, Student control

 Server needs to control all communication between everyone

 Admin control must be able to receive data from the server, and control the

student application

 Student control must be able to allow student to enter data, and send that

data to the server

 Must export data to excel format, for better analysis

 Lots of backups!!

Restrictions

 Everyone needs a laptop – not everyone has the same laptop (must be cross-platform)

 Server must run on a laptop

 Power might not be available in the stands

 Cannot use Wi-Fi

 Available space is very limited in the stands

My Choices

 Electron – Admin, Student control interfaces

 NodeJS – Cross-platform client-side JavaScript execution

 ExpressJS – Simplified routing for building an API

 SocketIO – UDP socket connection system

 jQuery – Simplified client-side scripting

 DiskDB – Simple JSON file-based database system

NodeJS

 It’s a JavaScript runtime based on the Chrome V8 JavaScript engine

 Allows you to write JavaScript code to run locally

 Node is designed to build scalable network applications

 Perfect for a cross-platform server!

Electron

 Electron is an open-source framework developed and maintained by GitHub.

 Allows for the development of desktop GUI applications

 Uses NodeJS for the backend, and Chromium for the front-end rendering

 Build once, run anywhere (Cross platform!)

 Don’t have to worry about polyfills, since everyone has the same engine

ExpressJS

 Minimalist web framework for NodeJS

 Provides a robust set of features for web and mobile applications

 Easiest way to build a simple API with NodeJS

 Simple methods for building application endpoints for a web API

DiskDB

 A Lightweight NOSQL-type disk based JSON Database with a MongoDB like API

for NodeJS.

 All operations are simple look-ups on a JSON file, Handles all file system

interactions for you

 Can connect to multiple dbs concurrently

 Reading, Writing, Updating, Deleting, Counting…

 No SQL server setup required!

SocketIO

 Socket.IO enables real-time, bidirectional and event-based communication.

 It works on every platform, browser or device, focusing equally on reliability

and speed.

 Controls a real-time UDP connection between clients and the sever

 Socket traffic is handled by SocketIO, all you need to do are add events and

responses

 Can control multiple connections simultaneously, and can separate groups of

connections into ‘rooms’

jQuery, SCSS, Jade

 jQuery is a library for simplified front-end scripting, building interfaces, and

the like

 SCSS is pre-compiled CSS with variables and automatic polyfill

 Jade is pre-compiled HTML with control structures like loops, and if

statements

 Together they offer a simplified way to build an advanced GUI

The System Overview

Database

Server

Student

Student

Student

Student

Student

Student

Admin

 1 Server with DB

 1+ Admins

 6+ Students

Building Simple Interfaces

 Simple interfaces are required to simplify the process for the students

 The interface should be simple enough to become second nature while the

student is scouting

 Colour coding and grouping of controls helps to offload thought from the

student while they are trying to scout

How the server works

 The server is responsible for all inter-network communications, as well as

storing and processing the data

 The server broadcasts itself on its network with a multicast address, so that

other computers on the network can locate the server by themselves

 All events are controlled through SocketIO, causing the server to take certain

actions, and respond to the request appropriately

How the Student application works

 Student application is the main data-entry interface

 The student application connects to the server through the multicast address,

and establishes a socket connection

 The application will then respond to events, and allow the scout to enter data

during the match

How the Admin application works

 The admin application is the main control center of the system. From here

you can start/stop a match, and control where the data is going

 The admin application connects to the server through the multicast address

 There can be a theoretical infinite number of admins connected to the server

Gambling for in-between matches

 An informed scouting team, is an awesome scouting team

 Making bets on the successes of other robots requires an active knowledge of

the performance of the robots

 Can only gain that knowledge by paying attention to the matches!

 This knowledge is very important for scouting meetings

Let’s run an example match!

Questions

