
Building a scouting application

with electron

2056 Ways to Inspire Conference – 2018

Ethan Elliott

A Bit of History

 Almost always paper-based scouting with Excel Spreadsheet

 Have only ever been paperless in 2011

 2011 setup required a lot of hardware

Why stop paper-based now?

 Based on the required data for 2018 game

 Needed a way to better track time between events, to calculate cycle times

 Students aren’t great at counting time and watching the game

 By offloading a lot of the work for the student, we can have them collect

more data

 Preform data sanitizing while the student is entering data

If you want to know more about the

strategy…

 CHECK OUT THE PRESENTATION AT THIS TIME IN THIS ROOM WITH THESE GREAT

PEOPLE

Where to start?

 Given the problem of building an entire scouting system across a full stack,

where do you start?

 Which tools should we use?

 What is the available hardware?

 What limitations should we take into account?

 How do we aim for the highest operational uptime?

What does it need to do?

 Needs to have three main components: Server, Admin control, Student control

 Server needs to control all communication between everyone

 Admin control must be able to receive data from the server, and control the

student application

 Student control must be able to allow student to enter data, and send that

data to the server

 Must export data to excel format, for better analysis

 Lots of backups!!

Restrictions

 Everyone needs a laptop – not everyone has the same laptop (must be cross-platform)

 Server must run on a laptop

 Power might not be available in the stands

 Cannot use Wi-Fi

 Available space is very limited in the stands

My Choices

 Electron – Admin, Student control interfaces

 NodeJS – Cross-platform client-side JavaScript execution

 ExpressJS – Simplified routing for building an API

 SocketIO – UDP socket connection system

 jQuery – Simplified client-side scripting

 DiskDB – Simple JSON file-based database system

NodeJS

 It’s a JavaScript runtime based on the Chrome V8 JavaScript engine

 Allows you to write JavaScript code to run locally

 Node is designed to build scalable network applications

 Perfect for a cross-platform server!

Electron

 Electron is an open-source framework developed and maintained by GitHub.

 Allows for the development of desktop GUI applications

 Uses NodeJS for the backend, and Chromium for the front-end rendering

 Build once, run anywhere (Cross platform!)

 Don’t have to worry about polyfills, since everyone has the same engine

ExpressJS

 Minimalist web framework for NodeJS

 Provides a robust set of features for web and mobile applications

 Easiest way to build a simple API with NodeJS

 Simple methods for building application endpoints for a web API

DiskDB

 A Lightweight NOSQL-type disk based JSON Database with a MongoDB like API

for NodeJS.

 All operations are simple look-ups on a JSON file, Handles all file system

interactions for you

 Can connect to multiple dbs concurrently

 Reading, Writing, Updating, Deleting, Counting…

 No SQL server setup required!

SocketIO

 Socket.IO enables real-time, bidirectional and event-based communication.

 It works on every platform, browser or device, focusing equally on reliability

and speed.

 Controls a real-time UDP connection between clients and the sever

 Socket traffic is handled by SocketIO, all you need to do are add events and

responses

 Can control multiple connections simultaneously, and can separate groups of

connections into ‘rooms’

jQuery, SCSS, Jade

 jQuery is a library for simplified front-end scripting, building interfaces, and

the like

 SCSS is pre-compiled CSS with variables and automatic polyfill

 Jade is pre-compiled HTML with control structures like loops, and if

statements

 Together they offer a simplified way to build an advanced GUI

The System Overview

Database

Server

Student

Student

Student

Student

Student

Student

Admin

 1 Server with DB

 1+ Admins

 6+ Students

Building Simple Interfaces

 Simple interfaces are required to simplify the process for the students

 The interface should be simple enough to become second nature while the

student is scouting

 Colour coding and grouping of controls helps to offload thought from the

student while they are trying to scout

How the server works

 The server is responsible for all inter-network communications, as well as

storing and processing the data

 The server broadcasts itself on its network with a multicast address, so that

other computers on the network can locate the server by themselves

 All events are controlled through SocketIO, causing the server to take certain

actions, and respond to the request appropriately

How the Student application works

 Student application is the main data-entry interface

 The student application connects to the server through the multicast address,

and establishes a socket connection

 The application will then respond to events, and allow the scout to enter data

during the match

How the Admin application works

 The admin application is the main control center of the system. From here

you can start/stop a match, and control where the data is going

 The admin application connects to the server through the multicast address

 There can be a theoretical infinite number of admins connected to the server

Gambling for in-between matches

 An informed scouting team, is an awesome scouting team

 Making bets on the successes of other robots requires an active knowledge of

the performance of the robots

 Can only gain that knowledge by paying attention to the matches!

 This knowledge is very important for scouting meetings

Let’s run an example match!

Questions

