
FRC Strategic Design

How to Decide Your Robot Design

Team 1241/1285

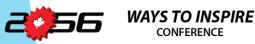
September 28, 2019

Malavya Shah

- Graduate of University of Waterloo
 - Bachelor of Applied Science, Mech. Eng. (2014)
- Joined FRC in 2007
 - Team 1241/1285
 - Student (2007-2009)
 - Lead Engineering Mentor
- Gypsum Technologies

CONFERENCE

Mechanical Specialist Engineer



Shaqeeb Momen

- Student at McMaster University
 - Bachelor of Engineering and Management,
 Mechatronics Engineering (2023)
- ▶ Joined FRC in 2014
 - Team 1241/1285
 - Student (2014-2017)
- Gypsum Technologies
 - Mechanical Specialist Intern

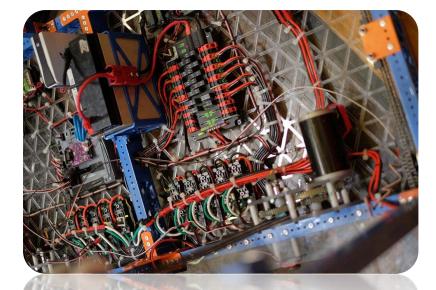
Objectives

- The Importance of Strategic Design
- Kickoff (and How 1241/1285 Does It)
- Game analysis
- Strategic Mechanism Selection
- Winning Designs

CONFERENCE

Mock Kickoff

Tips For Designing


- There is no right answer for an FRC game!
- Keep things simple
- Pay attention to orientation of game piece
- Possess game piece easily and quickly (touch and go)
- Try and take off load on motors when using arms
- Use sensors wherever possible, and choosing early
- Prove your designs through prototyping, not assumptions
- Pay attention to your team's skill level and resources

Your Fate Lies In Kickoff

- The decisions made during kickoff can dictate the rest of the design period
- Things to decide during kickoff:
 - Drive chassis
 - Strategic capabilities
 - Mechanisms to prototype

Kickoff Schedule - Saturday

- 9:30am Gather to watch Kick-Off
 - In the past, we've held Kick-Off at a library/auditorium
- 12:00pm Lunch
 - During this time, students and mentors can begin to read the game manual or continue watching field videos
- > 12:45pm Divide into 4 or 5 groups, each led by a mentor
 - Read game manual thoroughly
 - Read rules out loud, writing down any questions about the game

Kickoff Schedule - Saturday

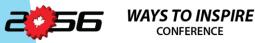
- 2:30pm Detailed scoring analysis and strategy
- 4:00pm Movements and preferences
 - Determine all movements/tasks that your robot will complete
 - Outline the possible robot roles and identify the specific role that would be most successful given the resources of the team
 - Separate tasks into their respective subsystems

Kickoff Schedule - Sunday

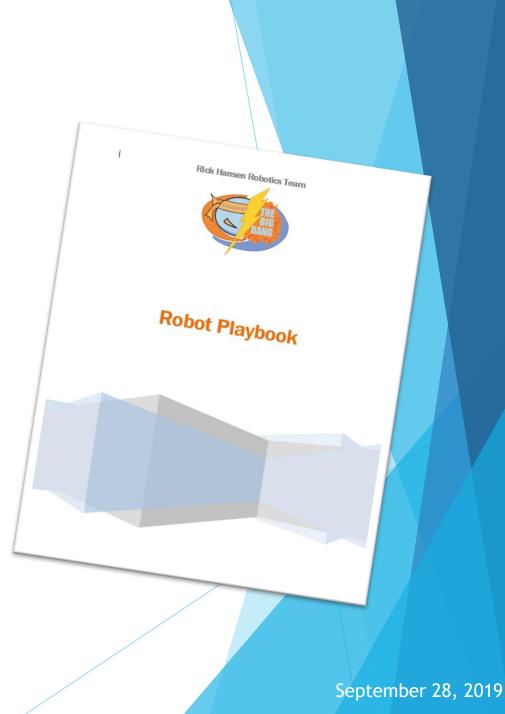
- 9:00am Meet at location to discuss strategy/requirements list
 - Finalize the list of requirements
- 9:45am Introduce Mentors/Leads for each section
 - Present strategy decisions from Saturday
- > 10:30am Discuss intake, tool, and end game design
 - Each Design must meet the requirements determined on Saturday
 - Begin to collaborate designs
 - Drivetrain should be selected by this point (must have a good reason for non-WCD)
- 12:30pm Lunch

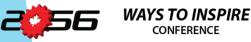
CONFERENCE

Kickoff Schedule - Sunday


- 1:00pm Discuss presented designs, rank and select
 - Accounting the advantages and disadvantages, two designs should be selected for each subsystem to be prototyped
- 2:30pm Detailed decisions and plan of action week 1
 - Set prototype variables for each proof of concept
- 4:00pm Lead mentors and key lead students begin preliminary geometric studies
 - Detailed drivetrain design begins

The Playbook


- Started with Team 1241, later adapted by 1285
- The "bible" of strategic design
- The Dos and Don'ts for a robotics team
 - > Team specific, but is public for other teams to refer to
- Usually print out multiple copies to use during Kickoff



The Playbook

- Contains information passed on through build seasons
 - Mechanism selection
 - Historic performance of certain mechanisms
 - Design tips
 - ► Etc.
- https://docs.wixstatic.com/ugd/0470e2_a5c58513b8d1446490efecfc1156e422.pdf

Reading the Game Manual

- Find important "loopholes" that can change your design strategy****
 - E.g., 2011 1114's Chokehold strategy
 - E.g., 2015 Ramps and tethered robots
- Important details can change mechanism selection
 - E.g., 2017 Custom rope

CONFERENCE

- Important for drivers and coaches to understand for practice
 - E.g., 2014 G40 Human player reaching into the field of play
- ****This is becoming increasingly difficult, so we mean find methods that guarantee you scoring more than your opponent.

Scoring Breakdown

- List all possible ways of scoring in autonomous, tele-op and endgame
- Determine Maximum Score
- Calculate time/resources required for each scoring motion
- Optimize time/resources with maximum points
- Note the importance of endgame/autonomous points!

Action	Auto	Teleop	Qual	Playoff
Reaching defense	2	-	-	-
Crossing undamaged defence	10	5	-	-
Boulder in Low Goal	5	2	-	-
Boulder in High Goal	10	5	-	-
Challenge (per robot)	-	5	-	-
Scale (per robot)	-	15	-	-
Breach	-	-	1 RP	20
Capture	-	-	1 RP	25

Action	Criteria	MATCH	Ranking	
Houon		AUTO	TELEOP	Points
AUTO mobility	For each ROBOT that breaks the BASE LINE vertical plane with their BUMPER by T=0	5		
Pressure accumulation	For every three (3) FUEL counted in the Low Efficiency GOAL by T=0 For every one (1) FUEL counted in the High	1 + 1 kPa		
	Efficiency GOAL by T=0 For every nine (9) FUEL counted in the Low Efficiency GOAL by T=0		1	
	For every three (3) FUEL counted in the High Efficiency GOAL by T=0		+ 1 kPa	
	If ALLIANCE exceeds a threshold pressure of 40 kPa		20 (Playoffs only)	1 (Quals only)
ROTOR engagement	For each ROTOR turning by period's T=0	60	40	
	If all four (4) ROTORS turning by T=0		100 (Playoffs only)	(Quals only)
Ready for Takeoff	For each TOUCHPAD triggered by a ROBOT at T=0		50	
Win	ALLIANCE's final score exceeds their opponents'			2 (Quals only)
Tie	ALLIANCE's final score equals their opponents'			1 (Quals only)

Movements and Preferences

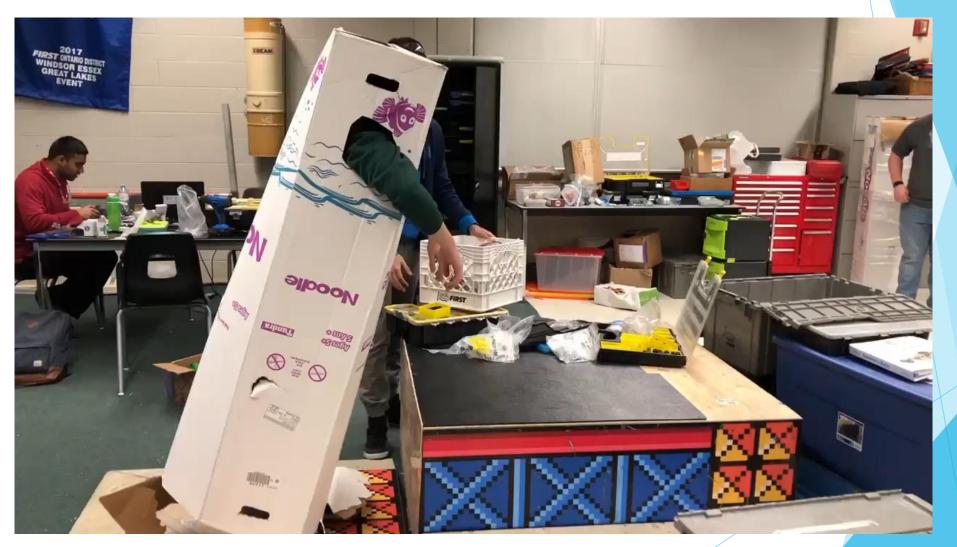
- List all possible robot movements
 - Crossing x defence, stacking totes x high, etc.
- Determine robot roles and select which one you prefer
- Outline role specific benchmarks to be successful at that role
 - Able to solo x rotors, able to win the minibot race
- Categorize into needs and wants

TO INSPIRF

- Needs are absolutely necessary for a successful robot design
- Wants are planned to be integrated into the design, but will be the first to be removed if resources run out

	PROS	CONS		
G/H (6)	Less complex Consistent, less mechanisms Bigger bonus in playoffs Easier for driver Good strategy for districts Easy to fix	CONS Capped score Caps at 2 RP Need help offensively No offense after gears are finished Need jack-of-all-trades for alliance Need airship finished before all else Less market value		
	 Higher chance to go undefeated 			
в/н (0)	 Niche 1 RP point No point cap More protection Higher tolerance Flexible positions 	 Need 2 gear bots on alliance Lower playoff bonus Lower score output Forced to pick up on floor Ball variability 		
* <mark>B/G/H</mark> * (11)	 Higher scoring potential Adaptability/versatility Marketing easy Always something to do Flexible during match Top tier team Strategic complexity (guals vs elims, RP vs points) 	 Complexity Packaging Tight deadlines Resources limited and time to prototype Weight allocation Risk of failing 		

PROS/CONS BETWEEN GEAR, BALL, HANG



Movements and Preferences

Movements and Preferences

Movement and Preferences Autonomous and Endgame

- Autonomous and endgame mechanisms are sometimes unique mechanisms and one of the sacrifices made for robot design
 - E.g., 2014 254's 3 ball auto (no catcher)
 - E.g., 2019 1619, 2767, 254 suction cup Level 3 climb
 - E.g., 2017 1241's auto gear holder
- Consider how the effort-reward ratio of these actions and how important they are to your strategy
 - Always work within the resource limitations of your team to help cut down

Subsystem Categories

- Most (if not all) robots in FRC can be broken down into 4 (or less) main subsystems by tasks
 - Drivetrain: normally responsible for traversing the field and any obstacles or defence.
 - Intake: used for obtaining possession/ejecting of game pieces.
 - Tool: main mechanism(s) for scoring points/manipulating game objects (can vary heavily).
 - Endgame: mechanism(s) used for scoring points during the final portion of the match the, "Endgame" period.

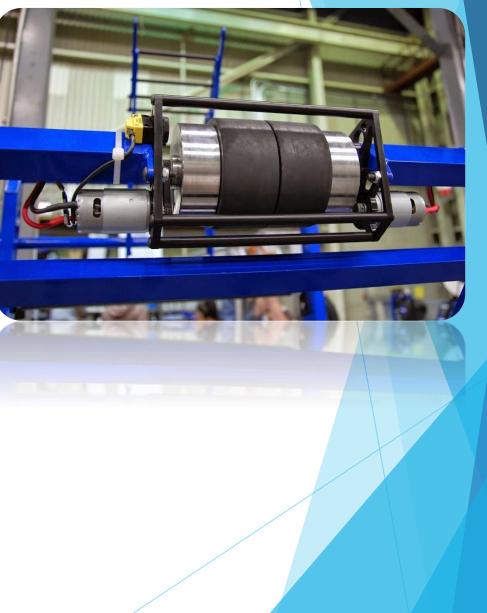
Mechanism Selection: Intake

- "Touch & Go"
 - Aim for intakes to give possession of the game piece as soon as they come into contact.
 - This will require you to always have some set of active rollers/wheels to contact the game piece.
 - Ideally the linear speed of your intake is faster than your drive.
- Gripping

(S TO INSPIRF

CONFERENCE

- Apply some pressure with elastic/pneumatic methods to keep object secure
 - Clamps, Claws usually do the trick.



Mechanism Selection: Shooter

- Catapult/Elastic Launcher
 - Can store the most potential energy
 - Needs to reset after each shot
 - Difficulty: MEDIUM
- Flywheel
 - Good for rapid/high volume shooting consistently
 - Difficulty: HARD
- Piston/Pneumatic Launcher
 - Usually the weakest and least efficient shooter style
 - Good for compact design
 - Difficulty: EASY-ISH

Mechanism Selection: Shooter

Turret

- Adds another level of complexity to design
- Creates more strategic locations for shooting
- Vision Tracking
 - Adds a slight delay, but when implemented properly, increases success rate(2016 vs 2014)
 - Add a dampener for camera to avoid shaking.
 - Requires large amount of time for testing by programmers or can be expensive to do quickly

Mechanism Selection: Lift

- Simple Bar Linkage
 - Good for rotating game piece or mechanism with lifting arm
- 4 or 6 Bar Linkage
 - Good for keeping game piece in same orientation during lifting
 - Arm swing may not be desirable for placing game pieces
- Elevator
 - Requires great attention to detail

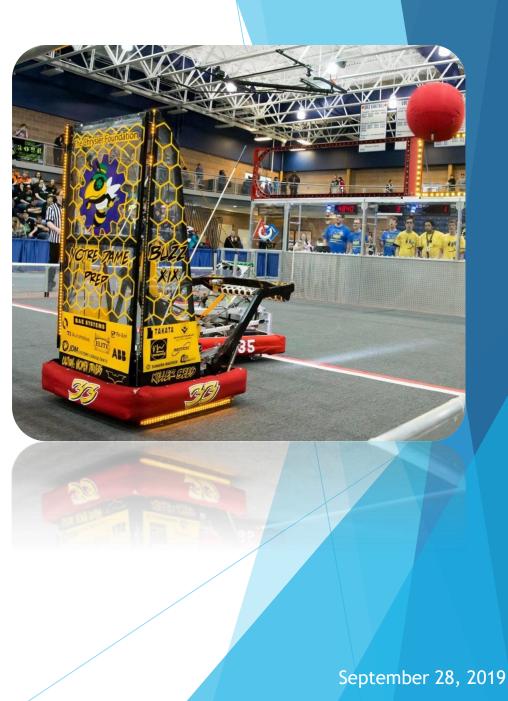

Mechanism Selection: Hanger/Climber

- Winch
 - Good for taller hangs/climbs, usually slower than pneumatic hangers
 - Ratcheting mechanism can help reduce load on motors
- Piston/Pneumatic

YS TO INSPIRE

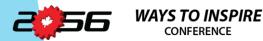
CONFERENCE

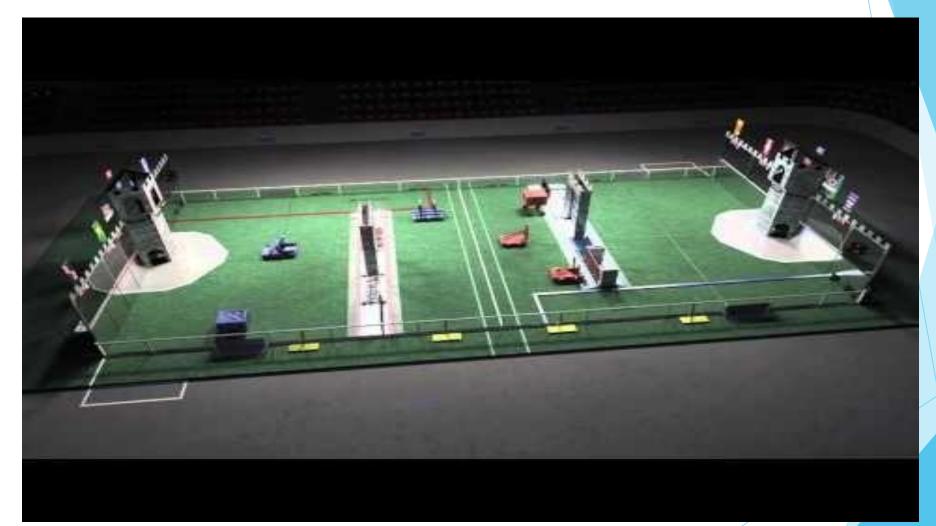
- Good for short distance hangs
- Can add constant force springs to reduce the required pneumatic force


- 1114 Simbotics
 - Chokehold strategy
- Key Endgame: Minibot Race

- 254 The Cheesy Poofs
 - ▶ 3 Ball Hot Autonomous
 - Multiple shots: fender, fender + robot
 - High shooter exit point
- Key Autonomous: Multiple Hot High Goals (254, 33)

- 4 Rotor Offence and Defence
 - Defending the 4th rotor meant a point swing of over 100
- Key Autonomous: Hopper Auto
 - 3x value for fuel was essential to achieving 40rp early in the competition season

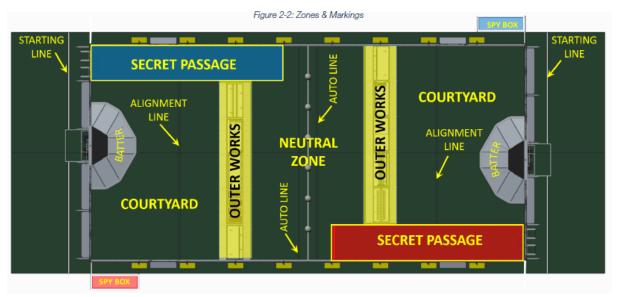

- Cube scoring on moving/losing scale (195)
 - Having ability to drop cubes on moving/losing scale cleanly meant higher stacks.
- Key Autonomous: 3-4 cubes scored on Scale (254)
 - 2x value for ownership. It also gives a head start for tele-operated period where opponents have to try and score 2 cubes to regain ownership.

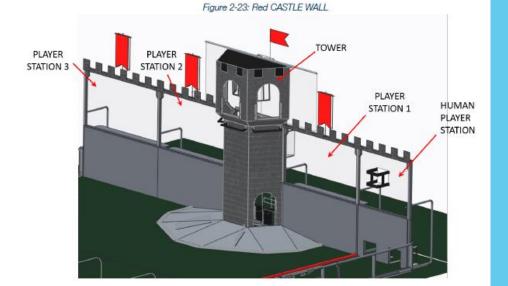


Mock Kickoff: Schedule

- Game Animation
- Game Manual
- List of Motions
- Scoring Analysis
- Strategic Goals
- Needs and Wants
- Mechanism Selection
- World Championships!

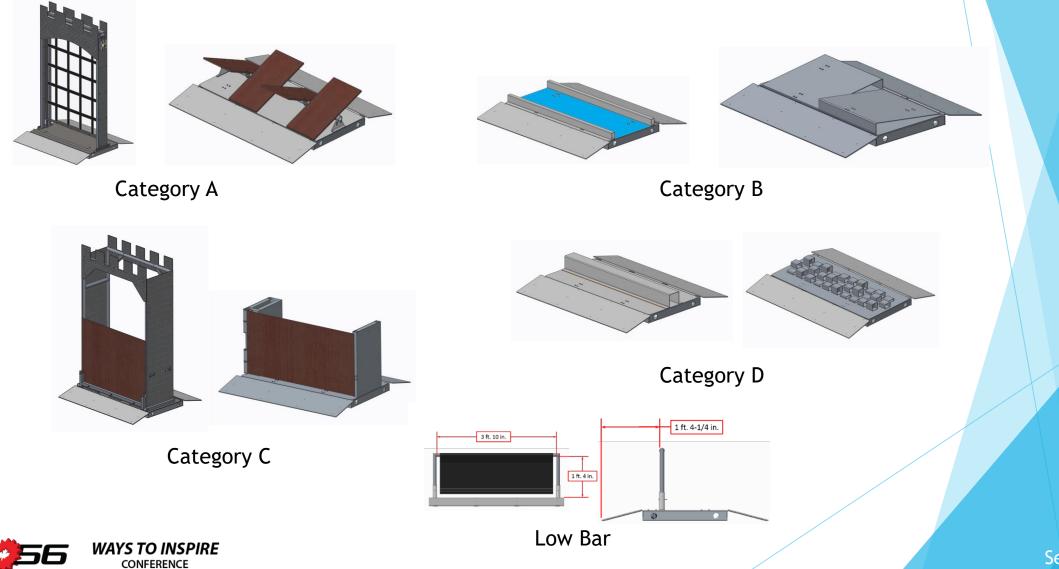
Mock Kickoff - Game Animation




Mock Kickoff - Game Manual

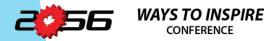
- Goal: Breach opponents defenses (outerworks), Score boulders into opponents tower, and capture it.
- Boulders are obtained from 2 locations
 - Secret Passage Located at your alliance wall station
 - Floor Some boulders are located at the centre of the field before match starts, missed boulders can also be picked up
- Protected Zones: Secret Passage, and if you are contacting the outerworks
- End Game:
 - Capture the opponents tower once it is damaged by being on the batter or climbing the rung with bumpers a certain height above the floor
 - Points are awarded for capturing, and elevating

Mock Kickoff - Game Manual



Action	Auto	Teleop	Quals	Elims
Reaching defense	2	-	-	-
Crossing undamaged defence	10	5	-	-
Boulder in Low Goal	5	2	-	-
Boulder in High Goal	10	5	-	-
Challenge (per robot)	-	5	-	-
Scale (per robot)	-	15	-	-
Breach	-	-	1 RP	20
Capture	-	-	1 RP	25

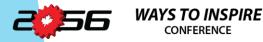
Mock Kickoff - Game Manual


September 28, 2019

Mock Kickoff - List of Motions

Tele-operated:

Driving


- In all directions (categories A, B, C, D, Low Bar)
- Able to pivot (on a dime)
- Intaking a boulder from floor
- Obtaining boulder from feeder station
- Scoring a boulder(which goal? And from where on the field?) -> 8 boulders causes tower to be damaged and able to be captured
- Crossing defenses (A, B, C, D, Low Bar) -> 80% defenses causes Breach = 1RP

Mock Kickoff - List of Motions

Autonomous:

- Crossing a defense (A, B, C, D, Low Bar)
- Vision tracking goal
- Scoring a boulder
- Picking up boulder
- End Game:
 - Challenging the castle (getting onto batter = 5pts)
 - Scaling the castle rung (15pts)

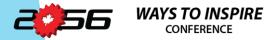
Mock Kickoff - Scoring Analysis

Mock Kickoff - Scoring Analysis (2013)

- Each disc in high goal is worth 3 pts in high goal (each cycle of 4 worth 12 pts)
- A robot elevated Level 1 is approximately the score of 1 cycle
- A robot elevated HIGH is approximately the score of 3 cycles
- ▶ 45 white discs (per alliance), 6 coloured discs (per alliance)
 - Autonomous (3 discs x 3 robots) + 6 accessible on floor = 90pts
 - 45 discs x 3pts + 6 discs x 5 = 165
 - Three robots elevated level 3 = 90
 - Maximum Score: 345

CONFERENCE

To achieve this, all discs have to be scored high, 3 robots must climb to level 3, and 6 discs scored on top of pyramid.

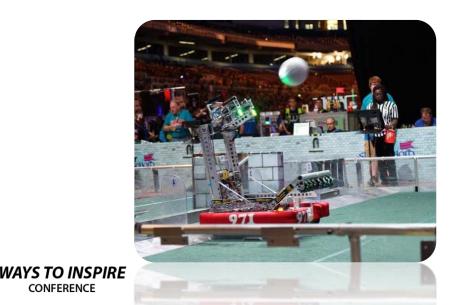

Mock Kickoff - Strategic Goals

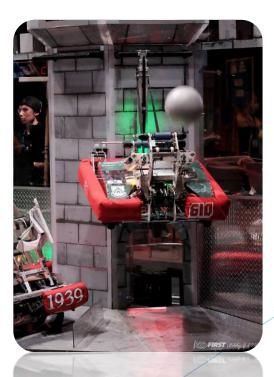
- Cross defenses A, B, D, Low Bar
- Traverse secret passage
- Score in high goal (10pts during Autonomous, 5 points during Teleop) from outerworks and from courtyard
- Score in low goal (5pts during Autonomous, 1 point during Teleop)
- Camera tracking for scoring
- Obtain boulder from floor
- Climb onto rung during endgame

Mock Kickoff - Subsystem Roles

- Assign your all your needs to the general subsystems (you may not need all of them)
 - Drive
 - Intake
 - Tool
 - Endgame

Mock Kickoff - Mechanism Selection


- Pick a mechanism that will best fit the task you assigned to each subsystem (adding minor tweaks to achieve your goals is common)
- Tele-Operated:
 - Drive Train Type?
 - Claw, clamp, roller, shovel intake?
 - Scoring mechanism? Catapult vs Flywheel
- End Game:
 - Climb on the rungs?
 - Pneumatic or winch?



- Outerworks shot
 - Opponents could not touch your robot while defending your shot
- Ball stealing (1241)

CONFERENCE

- Reduces cycle time and helps damage the castle
- Key Endgame: Hanging Shot (610, 330)

Mock Kickoff - Waterloo Regional 2016

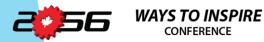
Questions?

Girls In STEM Olympics

*Space Is Limited!

f 🎔 🞯 @frc1241

Come check out some of our Innovation Fair exhibitors!



https://www.theory6.ca/girls-in-stem-olympics

September 28, 2019

Thanks for Coming!

- malavya.s.1241@gmail.com
- momens@mcmaster.ca

